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Abstract In this paper, a new Michaelis–Menten type chemostat model with time
delay and pulsed input nutrient concentration in a polluted environment is considered.
We obtain a ‘microorganism-extinction’ semi-trivial periodic solution and establish
the sufficient conditions for the global attractivity of the semi-trivial periodic solution.
By use of new computational techniques for impulsive differential equations with
delay, we prove and support with numerical calculations that the system is perma-
nent. Our results show that time delays and the polluted environment can lead the
microorganism species to be extinct.

Keywords Permanence · Impulsive input · Michaelis–Menten type chemostat
model · Time delay for growth response · Extinction

1 Introduction

A chemostat is basically a culture vessel having an input aperture for the influx of
sterile nutrient medium from a reservoir and an overflow aperture for the efflux of
exhausted medium, living cells, and cellular debris. The device (and the term “chemo-
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stat”) was invented by Novick and Szilard [1]. Chemostats consist essentially of two
primary parts: a sterile nutrient reservoir and a growth chamber. By controlling the
levels of the limiting nutrient, bacterial culture in the growth chamber can be kept at a
reduced growth rate over an indefinite period of time [2]. As medium flows out from
the growth chamber, bacteria and byproducts can be harvested. For example, chemo-
stats are frequently used in the industrial manufacturing of ethanol. Chemostats also
allow this yield and growth rate to be controlled independently. A biomathematical
model of the process would be helpful in developing strategies and since commercial
production can take place on a scale of many generations, it is important to understand
the asymptotic behavior of the system. Chemostats with period inputs are studied in
[3], with periodic washout rate in [4] and with periodic input and washout in [5].
However, existing theories on chemostat models largely ignore the effects of environ-
mental pollution. Environmental pollution caused by various industries and pesticides
used in agriculture is one of the most important social and ecological problems at
present. In order to use and regulate toxic substance wisely, we must assess the risk
of the population exposed to toxicant. Therefore, it is important to study the effects
of toxicant on populations and to find a theoretical threshold value, which determines
permanence or extinction of a population community. Many mathematical chemostat
models have been considered in the literature [3–17]. While the Monod model [7] has
some success in describing steady state growth rates, it has been found inadequate
to predict transients observed in chemostat experiments where the initial data is not
at the globally attracting steady state. Lag phases occur in the growth response of
microorganisms to changes in the environment and the models take the form of delay
differential equations [8–15]. We refer to Hsu and Tseng [10], Wolkowicz and Xia
[11], and the references therein, for more detailed discussions on chemostat model-
ing approaches using delay differential equations [8–15]. The microbial continuous
culture has been investigated in [1–17] and some interesting results were obtained.
Many scholars pointed out that it was necessary and important to consider models with
periodic perturbations, since these models might be quite naturally exposed in many
real world phenomena (for instance, food supply, mating habits, harvesting). Systems
with sudden perturbations lead to impulsive differential equations, which have been
studied intensively and systematically in [18–28]. The authors in [29–32] introduced
some impulsive differential equations in population dynamics and exhibited complex
behavior of impulsive equations. In recent years, the research on the chemostat model
with impulsive perturbations is a relevant subject in mathematical biology, but not
totally developed (see [33–37] and the references therein). Furthermore, high dimen-
sional delay chemostat models with pulse have never been seen by now. However, this
is an interesting problem in mathematical biology.

Therefore, it is relevant to introduce delayed growth response, impulsive input nutri-
ent concentration and impulsive input toxicant concentration to a chemostat model.
While delay differential equations have been widely used in modeling population
dynamics, some practical problems have to be overcome when applied to models of
the chemostat. We remark that the dynamics of impulsive and delayed differential
equations are usually more difficult to study than that of ordinary differential equa-
tions. As a result, fewer analytic tools are available for studying the dynamics of
impulsive and delayed differential equation, so, chemostat models with impulse and
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delay are not extensive. In this paper, we consider a Michaelis–Menten type competi-
tion chemostat model with impulsive input nutrient concentration and delayed growth
response in a polluted environment, and investigate how the impulsive perturbation of
the substrate, time delay for growth response and impulsive input toxicant affect the
dynamic behavior of the chemostat system.

2 Model and preliminaries

Hsu and coworkers [9,10] studied a chemostat model with the microbial continuous
culture

S′(t) = D(S0 − S(t)) −
2∑

i=1

µi S(t)xi (t)

δi (Ki + S(t))
,

x ′
1(t) = µ1S(t)x1(t)

K1 + S(t)
− Dx1(t), (1)

x ′
2(t) = µ2S(t)x2(t)

K2 + S(t)
− Dx2(t),

where S(t) denotes the concentration of the unconsumed nutrient in the growth vessel
at time t and xi (t)(i = 1, 2) denote the biomass of two populations of microorganisms
at time t . S0 and D are positive constants and denote, respectively, the concentra-
tion of the growth-limiting nutrient and the flow rate of the chemostat. The function

p(S) = µi S(t)xi (t)

δi (Ki + S(t))
represents two species specific per-capita nutrient uptake rate.

More details can be seen in the papers of Hsu and coworkers [9,10]. Hsu and cowork-
ers [9,10] considered chemostat-type competition models with continuous culture and
presented some basic progress on global qualitative analysis of solution to (1).

The taken nutrient cannot translate instantaneously into viable microorganisms,
that is, there is a time delay in the growth response that describes the lag involved in
the nutrient conversion process. At the same time the pulsed input concentration the
toxicant may lead to the microorganisms species be extinct in the polluted chemostat
environment. Therefore, we consider the polluted Michaelis–Menten type chemostat
model with pulsed input and delayed growth response in this paper.

The goal of this paper is to give a description of some of the basic dynamical
properties of a chemostat model with delayed growth response and impulsive pertur-
bation on the nutrient concentration in a polluted environment, which incorporates the
Michaelis–Menten functional response and two competitive predator species x1, x2.
The model takes the form

S′(t) = −DS(t) −
2∑

i=1

µi S(t)xi (t)

δi (Ki + S(t))
, t �= nT, n ∈ N ,

x ′
1(t) = e−Dτ1

µ1S(t − τ1)x1(t − τ1)

K1 + S(t − τ1)

−β1x2x1 − (D + r1c(t))x1(t), t �= nT, n ∈ N ,
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x ′
2(t) = e−Dτ2

µ2S(t − τ2)x2(t − τ2)

K2 + S(t − τ2)

−β2x1x2 − (D + r2c(t))x2(t), t �= nT, n ∈ N ,

c′(t) = −Dc(t), t �= nT, n ∈ N ,

�S = S(nT +) − S(nT )= γ S0, �x1 = x1(nT +) − x1(nT )= 0, t = nT, n ∈ N ,

�x2 = x2(nT +) − x2(nT ) = 0, �c = c(nT +) − c(nT ) = γ c0, t = nT, n ∈ N ,

S(0+) ≥ 0, x1(0
+) ≥ 0, x2(0

+) ≥ 0, c(0+) ≥ 0 (2)

where c(t) is the concentration of the toxicant in the chemostat, ri > 0(i = 1, 2)

is the rate of death of the killed microorganisms by the toxicant. �S = T = γ /D
is the period of the pulsing, γ S0 is the amount of limiting substrate pulsed each T .
DS0 units of substrate are added, on average, per unit of time. γ c0 is the amount of
pulsed input concentration the toxicant at each T . The constant τi ≥ 0(i = 1, 2)

denotes the time delay involved in the conversion of nutrient to viable biomass. The
positive constant, e−Dτi (i = 1, 2), is required, because it is assumed that the cur-
rent change in biomass depends on the amount of nutrient consumed τi (i = 1, 2)

units of time in the past by the microorganisms that were in the growth vessel at
that time and managed to remain in the growth vessel the τi (i = 1, 2) units of time
required to process the nutrient. S(nT +) = limt→nT + S(t), and S(t) is left contin-
uous at t = nT, i.e., S(nT ) = limt→nT − S(t), xi (t)(i = 1, 2) is continuous for
all t ≥ 0, c(nT +) = limt→nT + c(t), and c(t) is left continuous at t = nT, i.e.,
c(nT ) = limt→nT − c(t), the details can be seen in the books of Laksmikantham et al.
[18], Haddad et al. [19] and Zavalishchin and Sesekin [20].

Motivated by the application of systems (2) to population dynamics (refer to [38]),
we assume that solutions of systems (2) satisfy

S, x1, x2, c ∈ C+. (3)

Lemma 2.1 (see [18]) Consider the following impulse differential inequalities:

w′(t) ≤ (≥)p(t)w(t) + q(t), t �= tk,
w(t+k ) ≤ (≥)dkw(tk) + bk, t = tk, k ∈ N ,

where p, q ∈ C(R+, R), dk ≥ 0, and bk are constants.
Assume

(A0) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · , with limt→∞ tk = ∞;
(A1) w ∈ PC ′(R+, R) and w(t) is left-continuous at tk, k ∈ N .
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Then

w(t) ≤ (≥)w(t0)
∏

t0<tk<t

dk exp

⎛

⎝
t∫

t0

p(s)ds

⎞

⎠

+
∑

t0<tk<t

⎛

⎝
∏

tk<t j <t

d j exp

⎛

⎝
t∫

tk

p(s)ds

⎞

⎠

⎞

⎠ bk

+
t∫

t0

∏

s<tk<t

dk exp

⎛

⎝
t∫

s

p(θ)dθ

⎞

⎠ q(s)ds, t ≥ t0. (4)

Lemma 2.2 ([38]) Consider the following delay differential equation

dx(t)

dt
= ax(t − τ) − bx(t),

where a, b, τ are all positive constants and x(t) > 0 for t ∈ [−τ, 0].
(i) If a < b, then limt→∞ x(t) = 0.

(ii) If a > b, then limt→∞ x(t) = +∞.

For convenience, we give the basic properties of the following system:

S′(t) = −DS(t), t �= nT, n ∈ N ,

S(t+) = S(t) + γ S0, t = nT, n ∈ N , (5)

S(0+) = S10 ≥ 0

and

c′(t) = −Dc(t), t �= nT, n ∈ N ,

c(t+) = c(t) + γ c0, t = nT, n ∈ N , (6)

c(0+) = c10 ≥ 0.

Lemma 2.3 System (5) has a positive periodic solution S∗(t) and for any solution
S(t) of (5) with initial value S10 ≥ 0, we get |S(t)− S∗(t)| → 0 as t → ∞, moreover

(i) if S10 ≥ γ S0
1−e−DT , then S(t) ≥ S∗(t);

(ii) if S10 <
γ S0

1−e−DT , then S(t) < S∗(t)

where S∗(t) = γ S0e−D(t−nT )

1−e−DT , t ∈ (nT, (n + 1)T ], n ∈ N , S∗(0+) = γ S0
1−e−DT .

Proof For integrating and solving the first equation of system (5) between pulses,
yields

S(t) = S(nT )e−D(t−nT ), nT < t ≤ (n + 1)T,
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where S(nT ) be the initial value at time nT . Using the second equation of system (5),
we deduce that

S((n + 1)T ) = S(nT )e−DT + γ S0 = f (S(nT )), (7)

where f (S) = e−µT S + γ S0. Equation 7 has a unique positive equilibrium S∗ =
γ S0

1−e−DT . Since f (S) is a straight line with respect to S with slope less than 1, we
obtain that S∗ is globally asymptotically stable. This implies that the corresponding
periodic solution of system (5), is globally asymptotically stable. It is clear that

S∗(t) = γ S0e−D(t−nT )

1 − e−DT
, t ∈ (nT, (n + 1)T ], n ∈ N , S∗(0+) = γ S0

1 − e−DT

is a positive periodic solution of (5). The solution of (5) is S(t) = (S(0+) − S∗(0+))

e−Dt + S∗(t), t ∈ (nT, (n + 1)T ], n ∈ N . Hence |S(t) − S∗(t)| → 0 as t → ∞.
And S(t) ≥ S∗(t) if S10 ≥ γ S0

1−e−DT and S(t) < S∗(t) if S10 <
γ S0

1−e−DT . This proof is
complete. 	

Lemma 2.4 System (6) has a positive periodic solution c∗(t) and for any solution
c(t) of (6) with initial value c10 ≥ 0, we get |c(t) − c∗(t)| → 0 as t → ∞, moreover

(i) if c10 ≥ γ c0
1−e−DT , then c(t) ≥ c∗(t);

(ii) if c10 <
γ c0

1−e−DT , then c(t) < c∗(t)

where c∗(t) = γ c0e−D(t−nT )

1−e−DT , t ∈ (nT, (n + 1)T ], n ∈ N , c∗(0+) = γ c0
1−e−DT .

Lemma 2.4 can be analyzed by the same method as the above Lemma 2.3. So we
omit it.

Lemma 2.5 If (S(t), x1(t), x2(t), c(t)) is any solution of system (2) with initial condi-
tion (3), then there exists any small constant ε > 0 such that S(t) ≤ γ S0

1−e−DT + ε =: η,

xi (t) ≤ δiγ S0
e−Dτ eDT

eDT −1
+ ε =: Li , i = 1, 2 and 0 < m4 ≤ c(t) ≤ M4 where

τ = max{τ1, τ2}, m4 = γ c0e−DT

1−e−DT − ε and M4 = γ c0
1−e−DT + ε for t large enough.

Proof Let (S(t), x1(t), x2(t), c(t)) be any solution of system (2) with initial condi-
tion (3).

Let

W (t) = e−Dτ S(t) +
2∑

i=1

1

δi
xi (t + τi ).

The upper right derivative of W (t) along the trajectories of (2) is

Ẇ (t) ≤ −De−Dτ S(t) − D

δ1
x1(t + τ1) − D

δ2
x2(t + τ2)

= −DW (t)
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Consider the following impulse differential inequalities:

W ′(t) ≤ −DW (t), t �= nT, n ∈ N ,

W (t+) = W (t) + e−Dτ γ S0, t = nT, n ∈ N ,

by Lemma 2.1, we obtain

W (t) ≤ W (0+)e−Dt + e−Dτ γ S0
e−D(t−T )

1 − e−DT

+ e−Dτ γ S0
eDT

eDT − 1
→ e−Dτ γ S0

eDT

eDT − 1
, t → ∞.

According to the definition of W (t), it can be seen that S(t) ≤ η and xi (t) ≤ Li

(i = 1, 2) for t large enough. From system (6), we have that

c∗(t) = γ c0e−D(t−nT )

1 − e−DT
, t ∈ (nT, (n + 1)T ], n ∈ N , c∗(0+) = γ c0

1 − e−DT

is a globally asymptotically stable positive periodic solution of system (6). Hence, we
have that

γ c0e−DT

1 − e−DT
≤ c∗(t) ≤ γ c0

1 − e−DT
, t ≥ 0.

By Lemma 2.4, we get that

0 < m4 = γ c0e−DT

1 − e−DT
− ε ≤ c(t) ≤ M4 = γ c0

1 − e−DT
+ ε

for ε small enough and t large enough. The proof is complete. 	

Let R+ = [0,+∞), R4+ = {X ∈ R4 : X ≥ 0, X = (S, x1, x2, c)}, N be the set of

nonnegative integers. Denote f = ( f1, f2, f3, f4)
T the map defined by the right-hand

of the anterior two equations of system (2). Let V : R+ × R4+ → R+. Then V is said
to belong to class V0 if

(i) V is continuous in (nT, (n + 1)T ] × R4+ and for each X ∈ R4+, n ∈ N ,

lim(t,y)→((nT )+,X) V (t, y) = V ((nT )+, X) exists;
(ii) V is locally Lipschitzian in X .

Lemma 2.6 ([18]) Let V : R+ × R4+ → R+, and V ∈ V0. Assume that

D+V (t, z(t)) ≤ (≥)g(t, V (t, z(t))), t �= nT,

V (t, z(t)+) ≤ (≥)	n(V (t, z(t))), t = nT,

where g : R+ × R+ → R is continuous in (nT, (n + 1)T ] × R+ and for each
x ∈ R+, n ∈ N , lim(t,y)→((nT )+,x) g(t, y) = g((nT )+, x) exist; 	n : R+ → R+ is
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nondecreasing. Let r(t) = r(t, 0, u0) be the maximal (minimal) solution of the scalar
impulsive differential equation

u′ = g(t, u), t �= nT,

u(t+) = 	n(u(t)), t = nT,

existing on [0,∞). Then V (0+, z0) ≤ (≥)u0 implies that V (t, z(t)) ≤ (≥)r(t), t ≥ 0,

where z(t) = z(t, 0, z0) is any solution of (2) existing on [0,∞).

3 The main results

First, we investigate the extinction of the microorganism species, that is, micro-
organism are entirely absent from the chemostat permanently, i.e.,

x1(t) = x2(t) = 0, t ≥ 0.

This is motivated by the fact that x∗
i = 0(i = 1, 2) is an equilibrium solution for the

variable xi (t)(i = 1, 2), as it leaves x ′
i (t) = 0(i = 1, 2). Under these conditions, we

show below that the nutrient concentration oscillates with period T in synchronization
with the periodic impulsive input nutrient concentration, and the concentration of the
toxicant in the chemostat oscillates with period T in synchronization with the periodic
impulsive input the toxicant.

By Lemma 2.5 and the second and the third equations of system (2), it follows that

x ′
i (t) ≤ µi e

−Dτi xi (t − τi ) − (D + ri m4)xi (t), i = 1, 2

where m4 = γ c0e−DT

1 − e−DT
−ε. Clearly, if µi e−Dτi < D +ri

γ c0e−DT

1 − e−DT
, then µi e−Dτi <

D + ri
γ c0e−DT

1 − e−DT
− ε for ε small enough. By Lemma 2.2, we have limt→∞ xi (t) = 0

if µi e−Dτi < D + ri
γ c0e−DT

1 − e−DT
, which implies the microorganism species becomes

ultimately extinct. This shows that the specific growth of the microorganism species
can not supply the losing of the microorganism species to flow out and the death of
the microorganism species which is killed by toxicant no matter how much input the

nutrient. Therefore, we assume µi e−Dτi > D + ri
γ c0e−DT

1−e−DT (i = 1, 2) in the rest of this
paper.

By Lemmas 2.3 and 2.4, we have the following Lemma 3.1.

Lemma 3.1 Systems (5) and (6) have a unique positive periodic solution S∗(t) and
c∗(t), respectively, that is, the system (2) has a ‘microorganism-extinction’ semi-trivial
periodic solution (S∗(t), 0, 0, c∗(t)) for t ∈ (nT, (n + 1)T ], n ∈ N, for any solution
(S(t), x1(t), x2(t), c(t)) of (1) we have S(t) → S∗(t) and c(t) → c∗(t) as t → ∞.
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Theorem 3.1 Periodic solution (S∗(t), 0, 0, c∗(t)) of system (2) is globally attrac-
tive if

γ S0 < min

{
K1

(
1 − e−DT

) [
D

(
eDT − 1

) + r1γ c0
]

(
µ1e−Dτ1 − D

) (
eDT − 1

) − r1γ c0
,

K2
(
1 − e−DT

) [
D

(
eDT − 1

) + r2γ c0
]

(
µ2e−Dτ2 − D

) (
eDT − 1

) − r2γ c0

}
(8)

or

γ c0 > max

{(
eDT − 1

) [
γ S0

(
µ1e−Dτ1 − D

) − K1 D
(
1 − e−DT

)]

r1
[
γ S0 + K1

(
1 − e−DT

)] > 0,

(
eDT − 1

) [
γ S0

(
µ2e−Dτ2 − D

) − K2 D
(
1 − e−DT

)]

r2
[
γ S0 + K2

(
1 − e−DT

)] > 0

}
(9)

where γ = T D.

Proof Let (S(t), x1(t), x2(t), c(t)) be any solution of system (2) with initial condition
(3). From (8) or (9), we have

µ1e−Dτ1 γ S0
1−e−DT

K1 + γ S0
1−e−DT

< D + r1
γ c0e−DT

1 − e−DT
,

µ2e−Dτ2 γ S0
1−e−DT

K2 + γ S0
1−e−DT

< D + r2
γ c0e−DT

1 − e−DT
.

Since p(z) = µi e−Dτi z
Ki +z , i = 1, 2 is strictly increasing for all z ≥ 0, we may choose a

sufficiently small positive constant ε such that

µ1e−Dτ1η

K1 + η
< D + r1m4,

µ2e−Dτ2η

K2 + η
< D + r2m4

(10)

where

η = γ S0

1 − e−DT
+ ε, m4 = γ c0e−DT

1 − e−DT
− ε.

It follows from that the first equation of system (2) that S′(t) ≤ −DS(t). So we
consider the following impulse differential inequalities:

S′(t) ≤ −DS(t), t �= nT, n ∈ N ,

S(t+) = S(t) + γ S0, t = nT, n ∈ N .
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Using Lemma 2.1, we have

lim sup
t→∞

S(t) ≤ γ S0

1 − e−DT
.

Hence, there exist a positive integer n1 and an arbitrary small positive constant ε such
that for all t ≥ n1T ,

S(t) ≤ γ S0

1 − e−DT
+ ε =: η, c(t) ≥ γ c0e−DT

1 − e−DT
− ε = m4. (11)

From (11) and the second and the third equations of (2), we get that, for t > n1T + τ ,

x ′
1(t) ≤ µ1ηe−Dτ1

K1 + η
x1(t − τ1) − (D + r1m4)x1(t),

x ′
2(t) ≤ µ2ηe−Dτ2

K2 + η
x2(t − τ2) − (D + r2m4)x2(t).

Consider the following comparison equation

z′
1(t) = µ1ηe−Dτ1

K1 + η
z1(t − τ1) − (D + r1m4)z1(t),

z′
2(t) = µ2ηe−Dτ2

K2 + η
z2(t − τ2) − (D + r2m4)z2(t).

By Lemma 2.2 and (10), we obtain that

lim
t→∞ zi (t) = 0, i = 1, 2.

Since xi (s) = zi (s) > 0, i = 1, 2 for all s ∈ [−τ, 0], by the comparison theorem
in differential equation and the nonnegativity of solution (with xi (t) ≥ 0), we have
that xi (t) → 0(i = 1, 2) as t → ∞. Without loss of generality, we may assume that
0 < xi (t) < ε(i = 1, 2) for all t ≥ 0, by the first equation of system (2), we have

S′(t) ≥ −
(

D +
2∑

i=1

µiε

δi Ki

)
S(t).

Consider the following impulse system

z′
3(t) = −

(
D +

2∑

i=1

µiε

δi Ki

)
z3(t), t �= nT, n ∈ N ,

z3(t
+) = z3(t) + γ S0, t = nT, n ∈ N , (12)

z3(0
+) = S(0+).
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Then we have that, for nT < t ≤ (n + 1)T ,

z̃3(t) = γ S0e
−

(
D+∑2

i=1
µi ε
δi Ki

)
(t−nT )

1 − e
−

(
D+∑2

i=1
µi ε
δi Ki

)
T

is a unique globally asymptotically stable positive periodic solution of system (13).
By Lemma 2.6, z̃3(t) ≤ S(t) and z̃3(t) → S∗(t) as ε → 0. Hence, for any ε1 > 0,
there exists such a T1 > 0 that, for t > T1,

S(t) > z̃3(t) − ε1. (13)

On the other hand, from the first equation of (2), it follows that

S′(t) ≤ −DS(t).

Consider the following comparison system

z′
4(t) = −Dz4(t), t �= nT, n ∈ N ,

z4(t
+) = z4(t) + γ S0, t = nT, n ∈ N , (14)

z4(0
+) = S(0+).

Then we have

S(t) < z̃4(t) + ε1 (15)

as t → ∞ and z̃4(t) = S∗(t), where z̃4(t) is a unique positive periodic solution
of (15).

Let ε → 0, then it follows from (13) and (15) that

S∗(t) − ε1 < S(t) < S∗(t) + ε1,

for t large enough, which implies S(t) → S∗(t) as t → ∞.

Since the variables S, x1 and x2 do not appear in the fourth equation of system (2),
then we only need to consider the subsystem of (2) as follows:

c′(t) = −Dc(t), t �= nT, n ∈ N ,

c(t+) = c(t) + γ c0, t = nT, n ∈ N ,

c(0+) = c10 ≥ 0.

According to Lemma 2.4, we get that c(t) → c∗(t) as t → ∞. This completes the
proof.
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Corollary 3.1 Periodic solution (S∗(t), 0, 0, c∗(t)) of system (2) is globally attrac-
tive if

τ > max

{
1

D
ln

µ1γ S0
(
eDT − 1

)
[
K1

(
1 − e−DT

) + γ S0
] [

D
(
eDT − 1

) + r1γ c0
] ,

1

D
ln

µ2γ S0
(
eDT − 1

)
[
K2

(
1 − e−DT

) + γ S0
] [

D
(
eDT − 1

) + r2γ c0
]
}

where γ = T D.

Theorem 3.2 There exist some constants m2 > 0, m3 > 0 such that lim inf t→∞
x1 = m2 and lim inf t→∞ x2 = m3, provided

γ S0 > max

{
K1 (D + β1L2 + r1 M4)

(
e(D+µ2 L2/(δ2 K2))T − 1

)

µ1e−Dτ1 − (D + β1L2 + r1 M4)
> 0 ,

K2 (D + β2L1 + r2 M4)
(
e(D+µ1 L1/(δ1 K1))T − 1

)

µ2e−Dτ2 − (D + β2L1 + r2 M4)
> 0

} (16)

or

γ c0 < min

{(
1−e−DT

){
γ S0µ1e−Dτ1−

[
γ S0+K1

(
e(D+µ2 L2/(δ2 K2))T −1

)]
(D+β1 L2)

}

r1

[
γ S0+K1

(
e(D+µ2 L2/(δ2 K2))T −1

)] ,

(
1−e−DT

){
γ S0µ2e−Dτ2 −

[
γ S0+K2

(
e(D+µ1 L1/(δ1 K1))T −1

)]
(D+β2 L1)

}

r2

[
γ S0+K2

(
e(D+µ1 L1/(δ1 K1))T −1

)]

}
.

(17)

Proof Suppose that (S(t), x1(t), x2(t), c(t)) is any positive solution of system (2)
with initial conditions (3). From the first equation of system (2), we have

d S

dt
≥ −

(
D + µ1

δ1 K1
L1 + µ2

δ2 K2
L2

)
S(t). (18)

Consider the comparison system

z′
5(t) = −

(
D + µ1

δ1 K1
L1 + µ2

δ2 K2
L2

)
z5(t), t �= nT,

z5(t
+) = z5(t) + γ S0, t = nT, (19)

z5(0
+) = S(0+).

Let m1 = γ S0 exp
[
−

(
D+ µ1

δ1 K1
L1+ µ2

δ2 K2
L2

)
T

]

1−exp
[
−

(
D+ µ1

δ1 K1
L1+ µ2

δ2 K2
L2

)
T

] − ε > 0. From Lemmas 2.1 and 2.6, we

have S(t) > m1 for t large enough.
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From (16), we can choose ε small enough such that

δ1 K1

µ1

[
1

T
ln

(
γ S0

[
µ1e−Dτ1 − (D + β1L2 + r1 M4)

]

K1 (D + β1L2 + r1 M4)
+ 1

)
− µ2 L2

δ2 K2
− D

]
> 0,

δ2 K2

µ2

[
1

T
ln

(
γ S0

[
µ2e−Dτ2 − (D + β2L1 + r2 M4)

]

K2 (D + β2L1 + r2 M4)
+ 1

)
− µ1L1

δ1 K1
− D

]
> 0.

Take

0 < m2 <
δ1 K1

µ1

[
1

T
ln

(
γ S0

[
µ1e−Dτ1− (D+β1L2+r1 M4)

]

K1 (D+β1L2+r1 M4)
+1

)
−µ2L2

δ2 K2
−D

]
,

0 < m3 <
δ2 K2

µ2

[
1

T
ln

(
γ S0

[
µ2e−Dτ2− (D+β2L1+r2 M4)

]

K2 (D+β2L1+r2 M4)
+1

)
−µ1L1

δ1 K1
−D

]
.

(20)

In the following, we want to find m2 > 0 and m3 > 0, such that x1(t) > m2, x2(t) >

m3 for t large enough. We will do it in the following two steps for convenience.
Step I: We will prove there exist t1, t2 ∈ (0,∞) such that x1(t1) ≥ m2 > 0 and

x2(t2) ≥ m3 > 0. Otherwise, there will be three cases:

(i) There exists a t2 > 0 such that x2(t2) ≥ m3, but x1(t) < m2 for all t > 0;
(ii) There exists a t1 > 0 such that x1(t1) ≥ m2, but x2(t) < m3 for all t > 0;

(iii) x1(t) < m2, x2(t) < m3 for all t > 0.

We first consider case (i). According to the above assumption, we get

Ṡ(t) ≥ −
(

D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
S(t). (21)

By Lemma 2.6 on (21), we have S(t) ≥ z6(t) and z6(t) → z̃6(t) as t → ∞, where
z6(t) is the solution of

z′
6(t) = −

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
z6(t), t �= nT,

z6(t
+) = z6(t) + γ S0, t = nT, (22)

z6(0
+) = S(0+),

and

z̃6(t) =
γ S0 exp

[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
(t − nT )

]

1 − exp
[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
T

]
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≥
γ S0 exp

[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
T

]

1 − exp
[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
T

] =: η.

Then, from (20), we have

e−Dτ1
µ1(η − ε)

K1 + η − ε
> (β1L2 + D + r1 M4). (23)

Therefore, there exists a ε > 0 small enough, such that S(t) ≥ z6(t) > η − ε and

dx1(t)

dt
≥ e−Dτ1

µ1(η − ε)x1(t − τ1)

K1 + η − ε
− (β1L2 + D + r1 M4)x1(t). (24)

By Lemma 2.2, (23) and (24), we have that x1(t) → ∞ as t → ∞, which is a
contradiction.

Similarly, we can prove x2(t) → ∞ as t → ∞ in case (ii), which also is a contra-
diction.

Last, we consider case (iii). The second and the third equations of system (2) may
be rewritten as follow:

x ′
1(t) =

[
µ1e−Dτ1

S(t)

K1 + S(t)
− β1x2(t) − (D + r1c(t))

]

× x1(t) − µ1e−Dτ1
d

dt

t∫

t−τ1

S(θ)x1(θ)

K1 + S(θ)
dθ, (25)

x ′
2(t) =

[
µ2e−Dτ2

S(t)

K2 + S(t)
− β2x1(t) − (D + r2c(t))

]

× x2(t) − µ2e−Dτ2
d

dt

t∫

t−τ2

S(θ)x2(θ)

K2 + S(θ)
dθ.

Define

V (t) = x1(t) + x2(t) + µ1e−Dτ1

t∫

t−τ1

S(θ)x1(θ)

K1 + S(θ)
dθ + µ2e−Dτ2

t∫

t−τ2

S(θ)x2(θ)

K2 + S(θ)
dθ.

Calculating the derivative of V (t) along the solution of (2), it follows from (26) that

dV (t)

dt
=

[
µ1e−Dτ1

S(t)

K1 + S(t)
− β1x2(t) − (D + r1c(t))

]
x1(t)

+
[
µ2e−Dτ2

S(t)

K2 + S(t)
− β2x1(t) − (D + r2c(t))

]
x2(t). (26)
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According to Lemma 2.5, for any ε > 0 small enough, there exists a positive constant
T1 such that for t ≥ T1,

c(t) ≤ γ c0

1 − e−DT
+ ε = M4.

Hence follows from (26) that

dV (t)

dt
≥

[
µ1e−Dτ1

S(t)

K1 + S(t)
− β1L2 − (D + r1 M4)

]
x1(t)

+
[
µ2e−Dτ2

S(t)

K2 + S(t)
− β2 L1 − (D + r2 M4)

]
x2(t) (27)

= (β1L2 + (D + r1 M4))

[
µ1e−Dτ1

β1L2 + (D + r1 M4)
· S(t)

K1 + S(t)
− 1

]
x1(t)

+ (β2 L1 + (D + r2 M4))

[
µ2e−Dτ2

β2 L1 + (D + r2 M4)
· S(t)

K2 + S(t)
− 1

]
x2(t),

for t ≥ T1.

From the first and fourth equations of system (2), we have

S′(t) ≥ −
(

D + µ1m2

δ1 K1
+ µ2 L2

δ2 K2

)
S(t), t �= nT,

S(t+) = S(t) + γ S0, t = nT

and

S′(t) ≥ −
(

D + µ1L1

δ1 K1
+ µ2m3

δ2 K2

)
S(t), t �= nT,

S(t+) = S(t) + γ S0, t = nT .

Then, by Lemma 2.1, there exists such T2 ≥ t0 + τ , for t ≥ T2 that

S(t) >
γ S0 exp

[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
T

]

1 − exp
[
−

(
D + µ1

δ1 K1
m2 + µ2

δ2 K2
L2

)
T

] − ε =: η1 (28)

and

S(t) >
γ S0 exp

[
−

(
D + µ1

δ1 K1
L1 + µ2

δ2 K2
m3

)
T

]

1 − exp
[
−

(
D + µ1

δ1 K1
L1 + µ2

δ2 K2
m3

)
T

] − ε =: η2. (29)
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From (20), (28), (29) and (16) or (17), we have

µ1e−Dτ1

β1L2 + (D + r1 M4)
· η1

K1 + η1
> 1 (30)

and

µ2e−Dτ2

β2 L1 + (D + r2 M4)
· η2

K2 + η2
> 1. (31)

From (28), (28), (29), we have

dV (t)

dt
> (β1L2 + (D + r1 M4))

[
µ1e−Dτ1

β1L2 + (D + r1 M4)
· η1

K1 + η1
− 1

]
x1(t)

+ (β2 L1 + (D + r2 M4))

[
µ2e−Dτ2

β2L1 + (D + r2 M4)
· η2

K2 + η2
− 1

]
x2(t),

for t ≥ T ∗ = max{T1, T2}. (32)

Let

xl
i = min

t∈[T ∗,T ∗+τ ] xi (t), i = 1, 2.

We show that xi (t) ≥ xl
i for all t ≥ T ∗, i = 1, 2. Otherwise, there exists a nonnegative

constant T3 such that xi (t) ≥ xl
i for t ∈ [T ∗, T ∗ + τ + T3], x(T ∗ + τ + T3) = xl

i and
x ′

i (T
∗ + τ + T3) ≤ 0. Thus from (30), (31) and the second and third equations of (2),

we easily see that

x ′
i (T

∗ + τ + T3) >

[
µi e

−Dτ ηi

Ki + ηi
− (D + βi L j + ri M4)

]
xl

i

= (D + βi L j + ri M4)

[
µi e−Dτ

D + βi L j + ri M4
· ηi

Ki + ηi
− 1

]
xl

i

> 0, i, j = 1, 2, i �= j,

which is a contradiction. Hence we get that xi (t) ≥ xl
i > 0 for all t ≥ T ∗.

From (30), (31) and (32), we have that for t ≥ T ∗ = max{T1, T2},

dV (t)

dt
> (β1L2 + (D + r1 M4))

[
µ1e−Dτ1

β1L2 + (D + r1 M4)
· η1

K1 + η1
− 1

]
xl

1

+ (β2 L1 + (D + r2 M4))

[
µ2e−Dτ2

β2 L1 + (D + r2 M4)
· η2

K2 + η2
− 1

]
xl

2

> 0, (33)
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which implies V (t) → +∞ as t → +∞. This contradicts V (t) ≤ ∑2
i=1(1 +

µiτi e−Dτi )Li . Therefore, for any positive constant t0, the inequality x1(t) < m2,
x2(t) < m3 cannot hold for all t ≥ t0.

From the above three cases, we conclude that, there exist t1, t2 such that x1(t1) ≥
m2, x2(t2) ≥ m3.

Step II: If xi (t) ≥ mi+1, i = 1, 2 for all t large enough, then our aim is obtained.
Otherwise, xi (t) is oscillatory about mi+1.

Let

m∗
i+1 = min

{mi+1

2
, mi+1e−(D+βi L j +ri M4)τ

}
, i, j = 1, 2, j �= i.

We claim xi (t) ≥ m∗
i+1, i = 1, 2. In the following, we shall prove that xi (t) ≥

m∗
i+1(i = 1, 2). There exist positive constants t̄i and ωi such that

xi (t̄i ) = xi (t̄i + ωi ) = mi+1

and

xi (t) < mi+1, for t̄i < t < t̄i + ωi .

When t̄i is large enough, xi (t) < mi+1 for t̄i < t < t̄i +ωi , then inequalities S(t) > ηi

and c(t) ≤ M4 hold true. Since xi (t) is continuous and bounded and is not effected by
impulses, we conclude that xi (t) is uniformly continuous. Hence there exists a constant
T4 ( with 0 < T4 < τ and T4 is independent of the choice of t̄i ) such that xi (t) >

mi+1
2

for all t̄i ≤ t ≤ t̄i + T4. If ωi ≤ T4, our aim is obtained. If T4 < ωi ≤ τ, from the
second and the third equations of (2) we have that x ′

i (t) ≥ −(D + βi L j + ri M4)xi (t)
for t̄i < t ≤ t̄i + ωi , i, j = 1, 2, j �= i. Then we have xi (t) ≥ mi+1e−(D+βi L j +ri M4)τ

for t̄i < t ≤ t̄i + ωi ≤ t̄i + τ since xi (t̄i ) = mi+1. It is clear that xi (t) ≥ m∗
i+1 for

t̄i < t ≤ t̄i + ωi . If ωi ≥ τ , then we have that xi (t) ≥ m∗
i+1 for t̄i < t ≤ t̄i + τ.

Thus, proceeding exactly as the proof for above claim, we can obtain xi (t) ≥ m∗
i+1 for

t̄i + τ ≤ t ≤ t̄i +ωi . Since the interval [t̄i , t̄i +ωi ] is arbitrarily chosen (we only need
t̄i to be large), we get that xi (t) ≥ m∗

i+1 for t large enough. In view of our arguments
above, the choice of m∗

i+1 is independent of the positive solution of (2) which satisfies
that xi (t) ≥ m∗

i+1 for sufficiently large t. The proof is complete. 	

From the above proof, we can obtain a corollary as follows:

Corollary 3.2 The system (2) is permanent provided that (16) or (17) hold true.

4 Discussion and numerical simulation

In this paper, we consider a Michaelis–Menten type competition chemostat model
with impulsive input nutrient concentration and delayed growth response in a pol-
luted environment. Our main aim is to investigate how the impulsive perturbation of
the substrate, time delay for growth response and impulsive input toxicant affect the
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Fig. 1 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 0.5, γ c0 = 0.3, T = 1. a Time-series of
x1(t). b Time-series of x2(t)

dynamic behavior of the chemostat system. All these results show that dynamical
behavior of system (2) becomes more complex under periodically impulsive inputting
substrate. In Sect. 3, we give the conditions for the population of microorganisms will
eventually be washed out of the chemostat and the conditions for the population of
microorganisms will eventually be permanent. Theorem 3.1 shows if the impulsive
periodic input nutrient concentration γ S0 is under certain value or the impulsive peri-
odic input concentration the toxicant γ c0 is over certain value, then the population of
microorganisms will be eventually extinct (see Fig. 1a, b). Then the microbial culture
is failed. In this case, the substrate S(t) and the microorganism xi (t)(i = 1, 2) can
not coexist. In Sect. 3, we give the conditions for permanence of the microorganisms
species. Theorem 3.2 shows if the impulsive periodic input concentration the nutrient
γ S0 is over certain value or the impulsive periodic input concentration the toxicant
γ c0 is under certain value, then the microorganisms species is permanent (see Figs. 2a,
b; 3a, b). In this case, the microorganism is obtained. Then the microbial culture is
successful. Obviously, if both the continuous culture and the impulsive culture can
obtain the microorganism, the latter is better than the former since the impulsive cul-

Fig. 2 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 1.2, T = 0.5. a Time-series of x1(t) with
γ c0 = 0.3. b Time-series of x2(t) with γ c0 = 0.3
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Fig. 3 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 1.2, T = 0.5. a Phase portrait of
S(t), x1(t) and x2(t) with γ c0 = 0.3. b Phase portrait of c(t), x1(t) and x2(t) with γ c0 = 0.3. c Phase
portrait of S(t), x1(t) and x2(t) with γ c0 = 0.9. d Phase portrait of c(t), x1(t) and x2(t) with γ c0 = 0.9

ture can save the substrate. Whether the microorganism is extinct or not is determined
completely by the input amount of the substrate γ S0 and concentration the toxicant
γ c0 for the fixed period nT .

The environment with no pollution is in favor of living of the microorganism spe-
cies. Otherwise, the polluted environment can lead to the microorganism species be
extinct (see Fig. 3c, d). This shows that the input concentration of the toxicant greatly
affects the dynamics behaviors of the model. We also note that the competition among
the microorganism species can not lead them to be extinct.

From Corollary 3.1 and Theorem 3.2, we can see the extinction and permanence of
the microorganism are dependent of time delays for growth response of the microor-
ganism. Ultimately, when time delays for growth response is too long, the permanence
of system disappears and the consumer population of the microorganism dies out, then
we call it “profitless” time delays. This shows the sensitivity of the model dynamics
on time delays (growth response). The ultimate scenario makes intuitive biological
sense: if it takes too long to grow then the highest possible recruitment rate to the
microorganism species (µi e−Dτi (i = 1, 2)) will drop below the losing rate to flow
out D and the death of the microorganism population which is killed by the toxicant
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leading to the extinction of xi (i = 1, 2). This implies that time delays are significant
influence on the dynamics behaviors of the model.

In conclusion, the fact that the microorganism cultures with variable yields exhibit
sustained oscillations has an important implication for coexistence. In a sense, our
results may provide a theoretical policy for the microorganism cultures in experiment.

In the following, we show the above results by numerical analysis. Then we con-
sider the hypothetical set of parameter values as µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1,
K1 = 0.8, K2 = 0.9, D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1.

If γ S0 = 0.5, γ c0 = 0.3, T = 1, then Theorem 3.1 hold true, which implies that
the microorganism species be extinct (see Fig. 1a, b). Synchronously, the input con-
centration of the toxicant and the input concentration of the substrate exhibit periodic
oscillation (see Fig. 4a, b). Figure 5a and b shows periodic solution (S∗(t), 0, 0, c∗(t))
of system (2) is globally attractive.

Fig. 4 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 0.5, γ c0 = 0.3, T = 1. a Time-series of
S(t). b Time-series of c(t)

Fig. 5 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 0.5, γ c0 = 0.3, T = 1. a Phase portrait
of S(t), x1(t) and x2(t). b Phase portrait of c(t), x1(t) and x2(t)
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Fig. 6 Dynamical behavior of the system (2) with µ1 = 1.1, µ2 = 1, δ1 = δ2 = 1, K1 = 0.8, K2 = 0.9,
D = 0.5, r1 = r2 = 0.6, β1 = β2 = 0.2, τ1 = τ2 = 0.1, γ S0 = 1.2, T = 0.5. a Time-series of S(t) with
γ c0 = 0.3. b Time-series of c(t) with γ c0 = 0.3

If γ S0 = 1.2, γ c0 = 0.3, T = 0.5, then Theorem 3.2 hold true, which implies that
the microorganism species be permanent (see Figs. 2a, b; 3a, b). The input concen-
tration of the toxicant and the input concentration of the substrate exhibit permanence
and periodic oscillation (see Fig. 6a, b). Synchronously, that the microorganism pop-
ulation also exhibits periodic oscillation (see Fig. 2a, b). From Fig. 3a and b, we can
see that system (2) has a globally asymptotically stable periodic solution.

If γ c0 = 0.9 and the other parameter values are invariable, then the permanence of
the microorganism species die out (see Fig. 3c, d). This shows that the input concen-
tration of the toxicant can lead to the microorganism species be extinct.

Acknowledgements We would like to thank the referees and the editor for their careful reading of the
original manuscript and many valuable comments and suggestions that greatly improved the presentation of
this paper. This project was supported by the National Natural Science Foundation of China (No. 30870397)
and National Basic Research Program of China 973 Program) (No. 2006CB403207-4)

References

1. A. Novick, L. Szilard, Description of the chemostat. Science 112, 715–716 (1950)
2. D.E. Dykhuizen, D.L. Hartl, Selection in chemostats. Microbiol. Rev. 47, 150–168 (1983)
3. S.B. Hsu, A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9(2), 115–132

(1980)
4. G.J. Butler, S.B. Hsu, P. Waltman, A mathematical model of the chemostat with periodic washout rate.

SIAM J. Appl. Math. 45(3), 435–449 (1985)
5. S.S. Pilyugin, P. Waltman, Competition in the unstirred chemostat with periodic input and washout.

SIAM J. Appl. Math. 59(4), 1157–1177 (1999)
6. H.L. Smith, P. Waltman, The Theory of the Chemostat (Cambridge University Press, Cambridge, 1995)
7. J. Monod, La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79(19), 390–401

(1950)
8. S.B. Hsu, C.C. Li, A discrete-delayed model with plasmid-bearing, plasmid-free competition in a

chemostat. Discrete Contin. Dyn. Syst. Ser. B 5, 699–718 (2005)
9. S.B. Hsu, S.P. Hubbell, P. Waltman, A mathematical theory for single-nutrient competition in the

continuous cultures of micro-organisms. SIAM J. Appl. Math. 32(2), 366–383 (1977)
10. S.B. Hsu, Y.H. Tzeng, Plasmid-bearing, plasmid-free organisms competing for two complementary

nutrients in a chemostat. Math. Biosci. 179, 183–206 (2002)
11. G.S.K. Wolkowicz, H.Y. Xia, Global asymptotic behavior of a chemostat model with discrete delays.

SIAM J. Appl. Math. 57(4), 1019–1043 (1997)

123



144 J Math Chem (2010) 47:123–144

12. J. Caperon, Time lag in population growth response of Isochrysis galbana to a variable nitrate envi-
ronment. Ecology 50(2), 188–192 (1969)

13. H.I. Freedman, J.W-H. So, P. Waltman, Coexistence in a model of competition in the chemostat incor-
porating discrete delays. SIAM J. Appl. Math. 49(3), 859–870 (1989)

14. S.G. Ruan, G.S.K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay.
J. Math. Anal. Appl. 204(3), 786–812 (1996)

15. H.Y. Xia, G.S.K. Wolkowicz, L. Wang, Transient oscillations induced by delayed growth response in
the chemostat. J. Math. Biol. 50(5), 489–530 (2005)

16. J.K. Hale, A.S. Somolinas, Competition for fluctuating nutrient. J. Math. Biol. 18(3), 255–280 (1983)
17. G.S.K. Wolkowicz, X.Q. Zhao, N-species competition in a periodic chemostat. Differential Integral

Equations. 11(3), 465–491 (1998)
18. V. Lakshmikantham, D. Bainov, P. Simeonov, Theory of Impulsive Differential Equations (World Sci-

entific, Singapore, 1989)
19. W.M. Haddad, V. Chellaboina, S.G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability,

Dissipativity, and Control. (Princeton University Press, Princeton, 2006)
20. S.T. Zavalishchin, A.N. Sesekin, Dynamic Impulse Systems. Theory and Applications. Mathematics

and Its Applications, vol. 394 (Kluwer Academic Publishers, Dordrecht, 1997)
21. W.B. Wang, J.H. Shen, J.J.Nieto, Permanence and periodic solution of predator prey system with Hol-

ling type functional response and impulses. Discrete Dyn. Nat. Soc. Art. ID 81756, 15 pp (2007).
doi:10.1155/2007/81756

22. B. Dai, H. Su, D. Hu, Periodic solution of a delayed ratio-dependent predator–prey model with mono-
tonic functional response and impulse. Nonlinear Anal. 70(1), 126–134 (2009). doi:10.1016/j.na.2007.
11.036

23. J.J. Nieto, R. Rodriguez-Lopez, New comparison results for impulsive integro-differential equations
and applications. J. Math. Anal. Appl. 328, 1343–1368 (2007)

24. B. Liu, Z.D. Teng, W.B. Liu, Dynamic behaviors of the periodic Lotka–Volterra competing system
with impulsive perturbations. Chaos Solitons Fractals 31(2), 356–370 (2007)

25. B. Liu, Y.J. Zhang, L.S. Chen, The dynamical behaviors of a Lotka–Volterra predator–prey model
concerning integrated pest management. Nonlinear Anal. Real World Appl. 6(2), 227–243 (2005)

26. J.H. Shen, J.L. Li, Existence and global attractivity of positive periodic solutions for impulsive pred-
ator–prey model with dispersion and time delays. Nonlinear Anal. Real World Appl. 10(1), 227–243
(2009). doi:110.1016/j.nonrwa

27. J. Chu, J.J. Nieto, Impulsive periodic solutions of first order singular differential equations. Bull.
London Math. Soc. 40, 143–150 (2008)

28. P. Georgescu, G. Morosanu, Pest regulation by means of impulsive controls. Appl. Math. Comput. 190,
790–803 (2007)

29. G. Jianng, Q. Lu, L. Qian, Chaos and its control in an impulsive differential system. Chaos Solitons
Fractals 34, 1135–1147 (2007)

30. X. Meng, J. Jiao, L. Chen, The dynamics of an age structured predator–prey model with disturbing
pulse and time delays. Nonlinear Anal. Real World Appl. 9, 547–561 (2008)

31. X. Meng, L. Chen, Global dynamical behaviors for an SIR epidemic model with time delay and pulse
vaccination. Taiwanese J. Math. 12(5), 1107–1122 (2008)

32. J. Zhou, L. Xiang, Z. Liu, Synchronization in complex delayed dynamical networks with impulsive
effects. Physica A Stat. Mech. Appl. 384, 684–692 (2007)

33. S.L. Sun, L.S. Chen, Dynamic behaviors of Monod type chemostat model with impulsive perturbation
on the nutrient concentration. J. Math. Chem. 42(4), 837–848 (2007)

34. M.J. Sun, L.S. Chen, Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive
input. J. Math. Chem. 43(2), 447–456 (2008)

35. G.P. Pang, Y.L. Liang, F.Y. Wang, Analysis of Monod type food chain chemostat with k-times period-
ically pulsed input. J. Math. Chem. 43(4), 1371–1388 (2008). doi:10.1007/s10910-007-9258-2

36. X. Song, Z. Zhao, Extinction and permanence of two-nutrient and one-microorganism chemostat model
with pulsed input. Discrete Dyn. Nat. Soc. Art. ID 38310, 14 pp (2006). doi:10.1155/DDNS/2006/
38310

37. F. Wang, C. Hao, L. Chen, Bifurcation and chaos in a Monod-Haldene type food chain chemostat with
pulsed input and washout. Chaos Solitons Fractals 32, 181–194 (2007)

38. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press,
San Diego, 1993)

123

http://dx.doi.org/10.1155/2007/81756
http://dx.doi.org/10.1016/j.na.2007.11.036
http://dx.doi.org/10.1016/j.na.2007.11.036
http://dx.doi.org/110.1016/j.nonrwa
http://dx.doi.org/10.1007/s10910-007-9258-2
http://dx.doi.org/10.1155/DDNS/2006/38310
http://dx.doi.org/10.1155/DDNS/2006/38310

	Dynamic analysis of Michaelis--Menten chemostat-type competition models with time delay and pulsein a polluted environment
	Abstract
	1 Introduction
	2 Model and preliminaries
	3 The main results
	4 Discussion and numerical simulation
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


